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Abstract

General attention at this stage of the work was devoted to development of the electron cooling
models in order to provide realistic comparison between nonmagnetized cooling force calculation
and experiments at Fermilab Recycler ring. Algorithm for optical stochastic cooing simulation
was introduced. The program structure was developed to realize detailed IBS simulation in
accordance with Zenkevich and plasma models.

During this stage of the Accord realization the following new algorithms were introduced into
BETACOOL:

- numerical calculation of the cooling force in nonmagnetized electron beam in accordance with
Binney’s formulae,

- asymptotic formulae for friction force derived by Ya. Derbenev,

- simulation of envelope scalloping effect,

- direct simulation in BETACOOL the voltage step method for friction force measurements,

- algorithm for longitudinal optical stochastic cooling simulation.

This report includes description of new models inserted into the code, results of benchmarking and
brief description of stochastic cooling simulation developed in co-operation with FZJ and optical
stochastic cooling simulation developed on the basis of BNL model.



Introduction

Initial design of RHIC electron cooling system presumed generation of magnetized electron beam
and its injection after acceleration into solenoid providing longitudinal magnetic field of the value
of 2 — 5 T. Large emittance of the electron beam prevents ion-electron recombination in the
cooling section and electron magnetization provides large enough cooling force.

A few models for magnetized cooling simulation were developed in the frame of previous contract
between BNL and JINR. The results of the magnetized friction force calculation were compared
with simulation of ion dynamics in an electron cloud using VORPAL code and with especial
experiments at CELSIUS cooling system. As result the accuracy of the cooling rate calculation
was increased and disagreement between numerical models and experimental results does not
exceed 50%. Simulations shown that for sufficient increase of the luminosity a required charge of
the electron bunch should be about 20 nC.

Electron cooling at RHIC using non-magnetized electron beam sufficiently simplifies the cooler
design. Generation and acceleration of the electron bunch without longitudinal magnetic field
permits to reach low value of emittance in the cooling section. Suppression of the ion
recombination with electrons in the cooling section can be performed using undulator at relatively
small field ~ 10-50 G. The cooling rate required for intrabeam scattering suppression can be
obtained at small charge of the electron bunch ~ 2-5 nC.

Obvious advantages of nonmagnetized version of the cooler design stimulate development and
benchmarking of the algorithm for cooling force calculation in absence of the magnetic field. In
previous version of BETACOOL program for friction force calculation in nonmagnetized electron
beam the following algorithms were used:

- numerical evaluation of 3D integral over the electron distribution function in the case of
flattened velocity distribution,

- Chandrasekhar’s formula for the friction force at uniform Maxwellian velocity distribution,

- asymptotic formulae for the friction force at flattened velocity distribution derived by Meshkov.

To provide accurate benchmarking of the existing algorithms and to improve accuracy and speed
of the calculation two new algorithms were introduced into the code: Binney’s formula and
asymptotic representation by Derbenev for flattened velocity distribution.

The nonmagnetized electron beam is used for cooling of 8 GeV antiprotons at Recycler cooling
system (Fermilab) commissioned in 2005. To provide comparison between friction force
simulated with BETACOOL and measured at Recycler the algorithm for direct simulation of the
ion beam parameter evolution during a voltage step procedure was introduced into the code.

To provide more accurate simulations of Intrabeam scattering process the algorithm structure was
modified. In the tracking procedure the longitudinal motion representation was corrected and
tested. The modules for particle co-ordinate transformation from laboratory frame to beam frame
and back were introduced. To avoid sufficient increase of the simulation time the possibility to
change an integration step over time for each process independently was introduced.

To control the bunch length one planes to use an optical stochastic cooling system. Algorithm for
the optical stochastic cooling simulation developed by BNL was implemented into the code. For
simulation of usual stochastic cooling the model developed by FZJ can be used in the simulations.
Description of this algorithm is also included into this report.



1. Friction force in nonmagnetized electron beam

1.1. Numerical calculation of the force components

In the particle rest frame the friction force acting on the ion at charge number Z inside a
nonmagnetized electron beam at density of n. can be evaluated by numerical integration of the
following formula
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where € and m are the electron charge and mass, V and V. are the ion and electron velocities
respectively.

The Coulomb logarithm In P is kept under the integral because the minimal impact parameter
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depends on electron velocity:
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At given value of the ion velocity the maximum impact parameter is constant and it is determined

by dynamic shielding radius or the ion time of flight through the electron cloud. Radius of the
dynamic shielding sphere coincides with Debay radius:
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when the ion velocity is less than the electron velocity spread A.. The plasma frequency wp is
equal to
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When the ion velocity sufficiently larger than the electron velocity spread it determines the
shielding radius
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The both formulae (1.3) and (1.5) can be combined together to have a smooth dependence of the
shielding radius on the ion velocity:
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In the case, when the shielding sphere does not contain big enough number of electrons to
compensate the ion charge (such a situation takes a place in the case of magnetized electron beam
at low longitudinal velocity spread) it has to be increased in accordance with the electron beam
density and the ion charge. In the program this radius is estimated from the expression

np' ~3Z. (1.7)

As a result, the maximum impact parameter is calculated as a minimum from three values:
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The second term describes the distance, which the ion passes inside the electron beam. Here 7 is
the ion time of flight the cooling section in the PRF:

I=IM. (1.9)
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In the case of axial symmetry the electron distribution function can be written in the following
form:
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where A, and Aj are the electron velocity spreads in the transverse and longitudinal direction
correspondingly. The shielding cloud in this case has an ellipsoidal shape which can be
approximated by the sphere of radius calculated using effective electron velocity spread:

A, =N+ AL (1.11)

The components of the friction force (1.1) can be calculated in cylindrical co-ordinate system as
follows:
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Within an accuracy of about 2% the upper limit of the integrals over velocity components can be
replaced from infinity to three corresponding rms values and integration over ¢ can be performed
from O to m due to symmetry of the formulae. In this case the friction force components can be
calculated as:



vy
V, -V, cosplexp| - —— ———

v, dedv,dv, ,
Pnin j ((V“ Y )2 +(V, —v, cosp) +visin (0)3/2 ) o

v, —V|)exp{— i Vz]

2 Aa2
2A° 2A”

v, dedv dv ,
Pin j((\/ -V )2 +(V, —v, cosp)’ +v sin’ (P)m L o

(1.13)

where the normalization factor is calculated in accordance with:
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The minimal impact parameter is the following function of the electron velocity components:
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At the ion velocity V >> A ,A | the minimal impact parameter becomes to be constant:
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and Coulomb logarithm can be removed from the integral. At extremely small ion velocity the
calculation of the minimal impact parameter in accordance with the formula (1.16) leads to zero
friction force value, when becomes to be p . > p,.. . One can avoid this problem introducing

mean minimal impact parameter in accordance with
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When the Coulomb logarithm L¢ is constant the two of three integrals in (1.12) can be calculated
analytically and the friction force components can be written in accordance with Binney’s
formulae:
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where B, and B are the following integrals:
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In the case of uniform Maxwellian distribution (when A, = A, =A,) the integrals (1.20) coincide

with each other and reproduce Chandrasekhar’s formula. In Budker’s notation it has the following
form:
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The formulae (1.12) have to give the same result when the logarithm is removed from the
integrals.

1.2. Asymptotic representation

For fast simulation of the cooling process in the BETACOOL were used asymptotic formulae
derived by I. Meshkov. In the case, when transverse velocity spread of electrons is substantially
larger than longitudinal one the friction force components are approximated in three ranges of the
ion velocity.

I. High velocity V > Aj, here longitudinal and transverse components of the friction force are
equal:
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and in this range the friction force shape coincides with formula (1.21).

Il. Low velocity A <V < A,. Here the transverse component of the friction force is given by the
following expression:
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1. Superlow velocity V < A;. Here the transverse component of the friction force is equal to zero,
the longitudinal component is given by:
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For the longitudinal component of the friction force at zero transverse velocity the asymptotic
formulae was derived by Ya. Derbenev in the following form:
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Here the Coulomb logarithms are calculated in accordance with the following formulae:
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In order to provide uniform usage of the formulae in the program the friction force calculation was
realized in three ranges of the ion velocity similarly to Meshko’s asymptotes.

I. High velocity V > A}, here longitudinal and transverse components of the friction force are
equal:
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Il. Low velocity A <V < A,. Here the transverse component of the friction force is given by the
following expression:
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and longitudinal one:
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I11. Superlow velocity V < Ay. Here the transverse component of the friction force is equal to zero,
the longitudinal component is given by:
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These formulae in the case V, = 0 give the correct result for longitudinal component of the friction
force (1.27), (1.28) and have a correct asymptotes at high ion velocity. The transverse component
of the force is calculated in accordance with Meshkov’s representation.

1.3. Benchmarking the code

All the formulae for the numerical friction force calculation (1.12, 1.19 and 1.21) have to coincide
in the case of uniform Maxwellian distribution of the electrons if the Coulomb logarithm is moved
under the integral. In this case the friction is symmetrical in the transverse and longitudinal

degrees of freedom. The formulae were tested at Recycler cooling system parameters that are
listed in the Table 1.1.

Table 1. The cooling system parameters used in simulations.

Cooling section length, m 20
Electron energy, MeV 4.36
Beta functions in the cooling section, m 20
Electron current, A 0.2
Electron beam radius, cm 0.45
Transverse temperature, eV 0.5
Longitudinal temperature, eV 0.01

In the Fig. 1.1. the results of the calculations at Ty = T, = 0.5 eV using different formulae are
presented.
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Fig. 1.1, a. Friction force components (left plot - transverse, right plot — longitudinal) as functions
of the ion velocity calculated with Chandrasekhar’s formula.
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Fig. 1.1, b. Friction force components (left plot - transverse, right plot — longitudinal) as functions
of the ion velocity calculated with Biney’s formula. Integration step is 0.003, upper limit is 3.
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Fig. 1.1, c. Friction force components (left plot - transverse, right plot — longitudinal) as functions
of the ion velocity calculated by numerical evaluation of 3D integral (1.13). The Coulomb
logarithm is removed from the integral. Number of integration steps over the transverse velocity is
27, over the longitudinal velocity - 26, over the angle - 15.

The maximum position and amplitude of the friction force calculated using different formulae
coincide within the accuracy of numerical integration. The numerical evaluation of 3D integral
requires by about 100 times longer calculation time and the accuracy decreases in the region of
small velocity (one can see a numerical noise in the Fig. 1.1, b due to small number of the
integration steps). The numerical noise in the region of small ion velocity at evaluation of 3D
integral is sufficiently less, when the Coulomb logarithm is kept under the integral.

At flattened electron velocity distribution the Binney’s formula has to coincide with the numerical
evaluation of 3D integral (1.13) when the Coulomb logarithm is removed over the integral. In the
Fig 1.2 the results of the force calculation at T = 0.01 eV are presented. At the flattened velocity
distribution the amplitude of the longitudinal component of the friction force is larger than the
transverse one, and the maximum position is located near the electron longitudinal velocity
spread. Both the formulae give the same result with the accuracy of numerical integration.
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The difference in the friction forces calculated as a 3D integral wit Coulomb logarithm inside or
outside the integral is illustrated in the Fig. 1.3.
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One can see that the accurate treatment of the Coulomb logarithm leads to slight decrease of the
friction force value and displacement of the maximum position into the region of larger ion
velocity. It means that at used parameters of the cooler the Binney’s formula provide good enough
accuracy of the calculation at sufficiently less calculation time. At other cooler parameters the
numerical evaluation of 3D integral can be used for estimation of the accuracy of other formulae
and for simulations can be used more fast algorithm.

For comparison between numerical and asymptotic representations of the friction force the
longitudinal component of the force calculated in accordance with Meshkov’s formulae is shown
in the Fig. 1.4. One can see that this asymptote sufficiently overestimate the friction force and it
can be used only for very rough estimates.
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Fig. 1.4. Meshkov’s asymptote of the friction force longitudinal component.

More appropriate candidate for comparison of the numerical results of the friction force
calculation with experiments is Recycler cooling system realizing the nonmagnetized cooling of
antiprotons. To simplify the comparison a few modifications in the program were done.

2. Modeling of Recycler cooling system

At usual electron cooling systems a longitudinal magnetic field is used for transportation of the
electron beam. At decrease of the magnetic field value in a cooling section the beam quality fast
decreases and investigation of nonmagnetized regime of the electron cooling can not be provided
in well controlled conditions. In July 2005 the Recycler cooling system was put into operation in
Fermilab. At this cooling system the longitudinal magnetic field in the cooling section is used only
to preserve angular spread of electrons € at the level below 200 prad. The required longitudinal
magnetic field value B is 105 G that corresponds to electron rotation with Larmor radius

pc -4
=—6@~=3-100"m,
P eB

where pc = 4,85 MeV is the electron momentum. The cooling section length is 20 m which
approximately corresponds to 2 steps of the Larmor helix. Maximum impact parameter at
maximum electron current of 500 mA is restricted by time of flight the cooling section and it is
equal

pmax z7'10_5m’
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that is smaller than the electron Larmor radius. At such parameters one can expect, that the impact
of magnetized collisions into the friction force is negligible.

To provide accurate comparison between results of experimental investigations at Recycler and
numerical simulation with BETACOOL a few new algorithms were implemented and tested.
General method for friction force measurements at Recycler is Voltage Step method and general
attention was devoted to simulation of this procedure in BETACOOL.

One of the peculiarities of the Recycler cooling system is sufficient dependence of the electron
transverse velocity spread on the distance from the beam centre. This effect appears due to the
beam envelope mismatch with the transportation channel. In the first approximation this effect can
be presented as a linear increase of the velocity spread with radial co-ordinate:
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L

where the velocity gradient is input into the simulations as an additional parameter of the

electron beam (last parameter in the Fig. 2.1).
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Fig. 2.1. Modification of the visual form for input a transverse velocity gradient.

To simulate the High Voltage step in the electron cooler the electron momentum can be varied
during simulations by change of the parameter “dP/P shift” (Fig. 2.1). RMS dynamics simulation
presumes that the mean ion momentum is constant during evolution therefore the voltage step
method can be simulated only in the frame of Model Beam algorithm. The mean momentum of
the ions is output in additional curve “dpmo2t.cur” and can be visualized in the same plot with a
momentum spread in the corresponding form of the Windows interface.

An example of the cooling process simulation is presented in the Fig. 2.2. The red curve
correspond to mean antiproton momentum. The first 1700 sec correspond to preliminary cooling
of antiprotons. At 1700 sec the electron momentum was shifted by the relative value of 10~ and
during next 2000 sec the mean antiproton momentum is cooled to the new momentum of the
electrons. The green curve presents the variation in time of the antiproton momentum spread.
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Fig. 2.2. Simulation of the voltage step method using BETACOOL program. The electron beam
parameters are presented in the Table 1.1.

Evolution of the antiproton momentum during the friction force measurement is also output as a
3D plot of the profile versus time as shown in the Fig 2.3.
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sigma
Fig. 2.3. The longitudinal profile evolution during friction force measurement.

To reproduce the procedure using in Fermilab for the beam longitudinal distribution measurement
the possibility to average of a few consequent longitudinal profiles was introduced. An example of
a few consequent averaged profiles calculated with BETACOOL after 2 keV step of the electron
energy is presented in the Fig. 2.4. The electron beam current is 500 mA.

13



T 1=2meV, T_t=0.9eV, dV/dr = 9e8 sec”-1

y
/
e( )

>

linear scale

1

‘ L § Ui ML

Energy, MeV

Fig. 2.4. Evolution of the longitudinal profile in time. Distance between slices is 50 sec.

3. Stochastic cooling simulation
3.1. Stochastic cooling in accordance to H.Stochorst model

Algorithm for stochastic cooling simulation was implemented into BETACOOL in accordance to
the model derived by H.Stochorst (FZJ). The stochastic cooling for transverse degrees of freedom
is simulated under assumption that the quarter wave loop pickup and kicker are located in the ring
at positions with zero dispersion and its derivative. The phase advance of the betatron oscillations

from pickup to kicker assumed to be (2k +1)§ , where K is integer, and the phase errors are

minimized. For two transverse degrees of freedom there is no band overlap. Cooling of
longitudinal degree of freedom is simulated in accordance with the theory of filter method. The
simulation presumes that the longitudinal cooling is applied using analogous system components
as in the case for transverse cooling. Pickup and kicker are then operated in X-mode and the signal
pass contains a notch filter that provides the necessary information on the energy deviation of a
particle for the coherent signal. Simultaneously the filter rejects the noise signals at frequency near
the revolution harmonics.

The model permits to estimate characteristic cooling times, consumption power and generate a

kick of the particle momentum in the Model Beam algorithm using geometry parameters of pikup
and kicker electrodes

3.1.1. Cooling rate calculation

The transverse emittance derivative over time in each plane can be written in the following form:

de 1

— = (s-s,), (3.1.1)

dt z-cool

where Tco0 describes the drift term in the Fokker-Plank equation and the equilibrium emittance €.
corresponds to the diffusion term [3, 4]. The characteristic time of the emittance variation due to
action of the stochastic cooling is equal:
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The transverse cooling time is determined from the parameters of the cooling system as follows:

2
L:EM.XJ(X).

3.13
3Nf, G-13)

z'cool

1 1 . . . . .
Here 17 =— —— is off-momentum factor of the storage ring, y is Lorenz factor of the ion, pr is
tr

critical energy of the ring in the rest energy units. f; is the ion revolution frequency. W = frax — fmin
is the bandwidth of the system with lower frequency fnin and upper frequency fnax. N is the ion
number. Total momentum spread of the beam ¢ 'is calculated from r.m.s. value in accordance with
the shape of distribution function. For instance, at a parabolic distribution

5=42P (3.1.4)

p rms

Formfactor XxJ(X) is calculated through a frequency range as follows:

x+f /W X2
J(x)=x 1-2x1 e . 3.1.5
x() X( X n[x+ f /W ]+ (x+f_ /W)x+f /W)J (3.1.5)

The x value is proportional to the linear gain of the system from pickup to kicker Ga :
x=G,/R, (3.1.6)
where the coefficient R is determined by parameters of pickup and kicker:

16 [n[dwW 1 hghy 1 Bpc

3Ap N Z oo (BBen,ng (1+B)’ f02||oop .

Here hy is height of the gap at pickup and kicker, the pickup and kicker sensitivity are given by

o = 2tanh| Zopk (3.1.8)
Pk 2h . ) o

p.k

R =

(3.1.7)

where Wy 1s the electrode width, Z — characteristic impedance, /4, — beta functions in the pickup
and kicker position, Ny is the number of lambda quarter loops in pickup and kicker, lioop is the
loop length. Ac, p and e — are the ion velocity, momentum and charge correspondingly, C is the
speed of light. Value A, is calculated through the bandwidth as follows

o (2nfl
A=LT sinz(Mde. (3.1.9)
W Bc

min

The equilibrium emittance value is determined by the cooling system parameters and the thermal
noise power:
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wher Taand Tg are the pickup and preamplifier temperatures correspondingly. The values A, and
A; are the following integrals:

foes sin > (271fl o0 / BC)

A =L df (3.1.11)
W ¢ 2nflg, /BC
2
fmax [ sin|2nefl, ., /BC
A3=ij (27flcp /B) df (3.1.12)
W 2nflig,, /Be

For longitudinal degree of freedom the cooling time calculation is based on solution of Fokker-
Plank equation. The ion distribution in the energy space is described by the function ‘I’(E), where

E is the energy deviation from mean kinetic energy Ey. The Fokker-Plank equation for the
distribution function W(E,t), which describes the particle density in the energy space, has the
following form

SwEn=- 2| FENED-DEY L viED|

where E is energy deviation from the mean kinetic energy E,.

Drift term in this equation describes the coherent cooling

where 1 1s the “single particle” cooling time. The diffusion term contains two parts
D(E,t)= D, (E,t)+ D, (E.t)
the beam heating due to thermal noise
D,,(E.t)= AE?
and beam heating due to the finite Schottky noise density
D, (E,t)= BE*¥(E,t).

To calculate dynamics of the rms beam parameters the Fokker-Plank equation can be reduced to
equation for the second moment of the distribution function which is determined by

ol =ﬁIE2‘P(E)dE (3.1.13)

This equation has the following form [5, 4]:
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2
dor _ —icé + Aot +EI E*¥?(E,t)dE
dt T, N

Rms dynamics algorithm presumes Gaussian distribution in all degrees of freedom. In the energy

space it corresponds to the density p(E,t) = lil\P(E’t) given by

1 exp(_ (E- EO)Z]

P \2no, 20
Thus the integral in the last term is equal to

2
N“c.

4’

and evolution of the second order momentum of the distribution function is described by the
following equation

[E*¥°dE = N*[E’p’dE =

2
dGE:_ 2 o + 3B

dt T ool 4\/n

No,, (3.1.14)

The values A, B, Tcoo and 1y are determined from the cooling system parameters as follows:

1 1

—=—-3A, (3.1.15)
Teool Ty
LW w2
A=e (To +T,)Zn | — | G2 | fZ +—|, (3.1.16)
E, fo 12
A4 2 |K| 2
0
the “single particle” cooling time 7 is given by
1 ) K
—=2Ae"/n,n ZG Wf, —, (3.1.18)
To E,
f .+ . ) .
where x = ULI, fo = % is the central frequency of the band. A; is determined by the
v+

formula (3.1.9) at the loop length of the longitudinal electrodes.
Characteristic rate for the longitudinal emittance deviation (in Betacool for the longitudinal

2
: . A . . .
emittance such a definition &,,, = (—pj is used) can be calculated in accordance with
Y
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1 1 degyg 1 doi 2 3BN
—= =— =——+ .
T €y Ot op dt T 4no,

(3.1.19)

. . _ o} I+ A
Using relation between energy and momentum deviations —& = Frap

the last equation can be
E, y P

reduced to:

1__ 2, 3BNy (3.1.20)

T T ool 4\/E 8Iong EO (1 + Y) .

3.1.2. Power consumption
Optimization of the cooling system parameters presumes not only minimization of the equilibrium
emittance and cooling time, but also keeping a consumption power in a reasonable range. The

consumption power for transverse cooling chain is calculated as a sum of thermal noise power and
Schottky power. The thermal noise power in the cooling bandwidth is given by:

Py =T, +TeJGAW, (3.1.21)
and this value has to be corrected to take into account losses in combiner Pcomp:

Pt = Pan 10 el B0 (3.1.22)

The Schottky power in the cooling band is

Sp

2
P :AanpoZ{h ] e? fye, GAW . (3.1.23)

p
The total power is calculated as the sum of (3.1.22) and (3.1.23) plus losses in an electronic chain.
The losses in the electronic chain are input into program as additional parameter Pjoss and total

consumption power is calculated in accordance with:

= + P, )-10%= : 1.
Ptot Pth,tot PS IOP LB/ 3 1 24

The loss power includes losses in splitter, reserve noise signal and others losses and by the order
of magnitude is about 10 dB.

The filtered thermal noise power in the cooling bandwidth at the kicker input can be estimated
from:

P, :§(TA +T,)GIW . (3.1.25)

The filtered Schottky power at the kicker input is
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2 2
P, =4ANn ze?G2n?| 22| Wlgz WO (3.1.26)
p f, 12

rms
The total power consumption is calculated by the same way as for transverse degrees of freedom.

3.1.3. Kick of the ion momentum components due to action of stochastic cooling

In the frame of Model Beam algorithm each particle is presented as a 6 co-ordinate vector:

X = (X,px, y,—,S— SO,Apj, where X and Yy are the horizontal and vertical co-ordinates, py and py
p

are corresponding momentum components, S-Sy is the distance from the bunch center (in the case
of coasting beam this variable can have arbitrary value), Ap is the particle momentum deviation
from momentum of reference particle p.

Some effects like electron cooling or internal target are located in some fixed points of the ring.
Such effects are characterizing by the ring lattice functions in the effect position. Some effects like
intrabeam scattering or scattering on residual gas are distributed over the total ring circumference.
Average action of such effects can be applied to the beam in “averaged” position in the ring, that
has the beta and dispersion functions equal to averaged over the ring ones, the alpha-functions and
dispersion derivative are equal to zero. Between the effect position the particle co-ordinates are
transformed using linear matria at random phase advance (the random generation of the phase
advance reflects that the integration step over time is sufficiently longer than revolution period and
than betatron oscillation period). Action of each effect is simulated as the particle momentum
variation in accordance with Langevin equation:

(px,y,s / p)fin = (px,y,s / p)in + Ax,y,sAT T Dx,y,sATva,y,s > (3127)

where ps is the particle longitudinal momentum deviation, subscript in correspond to initial
momentum value, subscript fin relates to final particle momentum after action of the effect, A and
D are the drift and diffusion terms for corresponding degree of freedom, AT is step of the
integration over time, § is Gaussian random number at unit dispersion. The regular variation of the
particle momentum due to action of drift term can be rewritten as

A
(Px,y,s/p)ﬁn=(px,y,s/p)in(1+ S AT). (3.1.28)

X,Y,S

Here the value does not depend on the effect poison in the ring, and it can be treated
(px,y,s / p)m P P s

as a “single-particle” cooling time. At large value of AT the absolute value of the term

(%TAT can be larger than unity (in the case of cooling this term has a negative sign). In
Prys’ Py

this case direct application of the formula (3.1.28) will lead to change a sign of corresponding
momentum component and can lead also to increase of its absolute value. This situation
corresponds to artificial diffusion heating of the beam on numerical algorithm. To avoid this

AX S
VS AT
Puys/ P)

“numerical” diffusion at >1 the formula (3.1.28) is transformed to the following

form
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A
(pyys/ p)ﬁn =(pyye/ p)in x GXP{(p—X’j’SpT AT}, (3.1.29)
X.Y,s in

which includes the (3.1.28) as a limit case at small AT.

In the case of random variation of the particle momentum components corresponding to diffusion
term in (3.1.27) the kick has to be calculated tacking into account the ring lattice parameters in the
effect position. In the simplest case at the constant diffusion the equation for the emittance
variation in time can be written as follows:

de, , Dy,
— = (3.1.30)
dt 2,
that gives
DX
Ag,, = T AT . (3.1.31)
T 2,

Tacking into account that rms momentum variation relates to the emittance variation as

Ag .
<62 > =2—"Y for the momentum components variation we have:

X,y
DX
A(px,y / p)= —TATE, |, (3.1.32)
8X,yBX,y

where Byy are the beta functions in the effect position in corresponding planes. For longitudinal
degree of freedom emittance is determined as square of the rms momentum spread and at this

definition we have:
_ Dlong
AAp/p)= [k " ATE, (3.1.33)
28Iong

where k = 1 for coasting beam and k = 2 for bunched one.

For the transverse degree of freedom the drift term in (3.1.27) is calculated in accordance with the
formula (2.3) for the “single particle” cooling time. The regular variation of transverse momentum
component are calculated in accordance with (3.1.28, 3.1.29):

(pxy/p)m(l— AT ] PAT
(p., /), = Foxy ool xy (3.1.34)
(pxy/p), exp[_ AT J ¢ AT
Tcool,x,y Tcool,x,y
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Diffusion coefficient for the transverse degrees of freedom can be calculated using formula
(3.1.10) for equilibrium emittance value. The emittance variation in time can be described by the
following differential equation:

de € D
ab . At A (3.1.35)
dt Tcool,x,y ng,y
From the other hand (3.1.1) gives
de, , _ By, Eeny ,
dt Tcool,x,y Tcool,x,y

and for the diffusion coefficient we have:

2e. €
D =Xy = (3.1.36)

X,y
Tcool,x,y

The diffusion power is proportional to square of the linear gain Ga that can be seen from
definitions of the cooling time and equilibrium emittance (3.1.3, 3.1.10). This result can be
obtained directly from expression for emittance derivative before introduction of €, as it done for
instance in [3].

In accordance with (3.1.32) for the momentum components variation we have:

2e,
Alp,y /p)= |7 ATe,,. (3.1.37)
Tcool,x,yBx,y

In the present version of the program the kick is applied to the ion momentum in “averaged”
position of the ring.

For longitudinal degree of freedom the “single particle” cooling time 7y is given by (3.1.18), and
the regular particle momentum variation is calculated as follows:

(mm%ﬁmﬂ}ifATa
T T
AP/ P)s = 0 0 3.1.38
(AP/ P) o YAt (3.138)
(Ap/p), exp| —k = |, if |=—>1
To Ty

. e . : ) N>
At arbitrary distribution function the integral .[ E’p°dE can be estimated by the value % ,

which is averaged for Gaussian and parabolic distributions. In this case the equation (3.1.14) can
be rewritten as

2
do :—EGZE +3Ac; +ENGE
dt T, 2
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L o
or tacking into account that —=
0

d8 long

dt

2
7D (&]
ry P P
2 BNy
——&m +3A80n T ————5/€n
o T ()

The thermal and Shottky diffusion terms are independent, correspondingly the momentum kick

due to diffusion is calculated as:

A(Ap/p)= (

BNy
2E,(y+1

2
)j 8Iong + (3A8Iong )2 kAT és

: (3.1.39)

Visual forms for input and output parameters of the stochastic cooling system are presented at the
Fig. 3.1 — 3.3. Structure of the input file corresponds to the structure of interface part.

¥ Effects | Stochastic cooling - | I:Ilﬂ
Horizontal | Wertical I Longitudinal I Common parameters I
v Use
= Elechionic gain—
Lower frequercy :II GHz  finear |3'| 622 78 ill
Upper frequency IE - | GHz (% logarithm IE":' :II 4B
Electiade length |'|,3 — e O ptimum linear gain I'I15353,3EIE|5
—Pickup Kicker
Electade width I'I A j o || Electrode width I1 A j o
z =
Bemlil E = o || Gapheight j18 —jom
MHumber of loop pairz I-I 28 | Murnber of loop pairs I32 e |
Beta function I?5 j i Beta function I?5 ﬁ It
Approx. length IZ,EhM i &pprox. length ID,?EE i
Sensitivity 09171523357 Sensitivity |0.9171523357
Thermal naise power  [0.008836277255 Sohottky power |0.07627264495 W
E quilibrium ermittance |1 544721 21E-10 pifmrad  Coaling rate IU,DU4E4?3?U2?3 £
T atal power IIJ,EIEIEF"FEIZIEIEE W Optirmurn cooling rate IEI,EIEIEEE1 B0E40E 1

Fig. 3.1. Visual form for input and output parameters for transverse cooling chain.
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% Effects | Stochastic cooling - | I:Ilil
Hu:urizu:untall Werical  Longitudinal | Commar parametersl

v Use

= Electronic gain—— -

Lowaer freu:|uer1u:_l,l|E - | GHz e |31E§22?,B j
Upper frequency IE j GHz (¥ |ogarithm I”D ill dE
Electiode length |3 i em Optimum linear gain [584548, 7601

Pickup nurmber of loop pairs |1 28 j Apprax length |2,944 i
k.icker number of loop pairs I32 j Approg.length I':'«HE m
Thermal noize power ID,2945425?52 W

Schattky power |0.22857 16053 W

Tl |6.953901276 W

) IEI,EI131 9704914 g1 Optimum coaling rate ||l|:|2441 774374 o

Coaoling rate

E quilibriurm mormenturn spread I?,29444E|255E-E

Fig. 3.2. Visual form for input and output parameters for longitudinal cooling chain.

_iox]

Hl:uriznntall "-.-"erticall Longitudinal  Common parameters |

T otal width of momenturn diztribution |4 j igrma

Pickup effective temperature 20) ;I K

Preamplifier temperature IEEI ﬁ K

Charachteriztic impedance IEEI j Qb

Lozzes in combiner I2 j dB

Other logzes I-“:I j ok

Fig. 3.3. Visual form for input parameters for power consumption calculation.
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3.2. Optical stochastic cooling

Optical stochastic cooling (OSC) is proposed for RHIC as stand-alone technique or to complement
electron cooling [6], acting mainly on halo particles for which electron cooling approach is less
efficient. OSC and its transit-time method were suggested to extend the stochastic cooling technique
into the optical domain, with broad-band optical amplifier and undulator (wigglers) for coupling the
optical radiation to charged-particle beam. Cooling results from a particle’s interaction in the kicker
undulator with its own amplifier radiation, emitted in the pickup undulator. The path of the particles
between the pickup and kicker (called a bypass) can be designed such that each particle receives a
correction kick from its own amplifier radiation toward equilibrium orbit and energy. The
interaction of a particle with amplified radiation from other particles results in heating. It was
shown in [7] that the balance between cooling and heating define the optimal power of amplifier
needed to achieved the ultimate cooling rate that is limited only by the bandwidth of the cooling
loop, pickup-amplifier-kicker. However, in all possible applications of OSC to heavy particles,
including ”’Au ions in the RHIC, the power required in such system appears to be several orders of
magnitude large then that feasible with modern optical amplifier. In this case, the amplifier’s power
limits the cooling time.

We define X=(X,X’,S,6)T as the particle 4D coordinate vector, where X,X’ are transverse coordinates
and angles, s is the longitudinal coordinate, o is the particle’s relative energy offset. We identify
the pickup undulator at a position A in the optics of the storage ring, and the kicker undulator at
the position B. The beam transport from A to B can be written as Xg=RXa. Consequently, Xa=R'Xg
and we define

Rll R12 0 R16
R—l — R21 R22 0 R26 (321)
RSI R23 1 R56
0 0 0 1

The path-length difference on the trajectory from A to B written in terms of particle coordinates at
a location B and taken relative to the equilibrium orbit is equal to

Al = —(Ry X+ Ry, X' + Ry, 8) (3.2.2)

This signal must be delayed to let the particle enter the kicker undulator ahead of the signal.
Moreover, the path length for a signal including the delay in the amplifier must be chosen such
that the equilibrium particle comes to the kicker undulator exactly at the crossover of the electric
field with the electromagnetic wave of the signal. Then, the phase difference for a nonequilibrium
particle is equal to

0= MZ;‘, (3.2.3)

where A is wavelength of the undulator radiation. The particle energy right after the energy kick is

§ =5+ Gsin(g), (3.2.4)

where G =—-AE/E, is the gain amplifier, Ey is the beam energy. For simple calculation G is
defined as
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G=G, -At-exp[— >” ZO], (3.2.5)

20,

At is time step of calculation, Gy is input parameter in the unit d/sec, zy and o, are parameters of
the ion bunch.

The visual form for input the OSC parameters is presented in the Fig. 3.4.

+ Effects | Optical Stochastic Co - |EI|E| % Effects | Dptical Stochastic Co - |EI|E|
Pararneters | Lattice funu:ti-:unsl Parameters  Lattice functions |
R51 Iﬁ j Harizontal Wertical
Beta [m] |l j j10 :'
RI52 [r] jo =
o = ae Jo = o
R5E [m |n.nn4 —]
GoldP/P/sec]  [RE7 o Dispersion [m] |0 = Jo -
N = Cizpersion | —
Zom I — dervative I =1 II:I =1
Sigma [m I? j
lambda [rn |1E'5 j

Fig.3.4. Input parameters for Optical Stochastic Cooling object.

[
=
—]
= ]
=
= + & .
= R O .
wif By
et +
s ..:;; +
“‘ 3 “i —
+ £ =
£ "'f: +ﬁt:1 + 39\. -
it +++ * ':' .
o ]
o ¥ e e * L
— N + - [=
% o} 3 T ? ' = —
* . LT =
He o, F 1 + A —
+ H + =
. . . 4 . #{ . =
+ o af 4y -
I-ﬁ' + . - ?":“‘ . + 7]
+¢:‘+ Y | o t.ﬁd"_ + ]
g :?’1::‘&“&‘" +
+ ]
R
= -
T ]
1 T T T T T 1 1
-2 0 2 -5 0 5
S-som Sigma

Fig. 3.5. Example of simulation using of Optical Stochastic Cooling: particle distribution in the
longitudinal phase space (left) and longitudinal profile (right).
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